SymPy is a Python library for symbolic mathematics.
This module is a computer algebra system (CAS) written in the Python programming language.
A large can be found on this blog aggregator at planet.sympy.org.
First, You need to install it using pip3.4.
1 2 3 4 5 6 7 8 9 | C:\Python34\Scripts>pip3.4.exe install sympy Collecting sympy Downloading sympy-0.7.6.tar.gz (6.4MB) 100% |################################| 6.4MB 35kB/s Building wheels for collected packages: sympy ... Successfully built sympy Installing collected packages: sympy Successfully installed sympy-0.7.6 |
For a short introduction into SymPy python module, I will show you the printing features.
The most common printers available in SymPy are:
- str
- repr
- ASCII pretty printer
- Unicode pretty printer
- LaTeX
- MathML
- Dot
Let’s test it this first example:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 | C:\Python34>python Python 3.4.1 (v3.4.1:c0e311e010fc, May 18 2014, 10:45:13) [MSC v.1600 64 bit (AMD64)] on win32 Type "help", "copyright", "credits" or "license" for more information. >>> from sympy import * >>> x,y,z = symbols('x y z') >>> Integral(sqrt(1+1/x),x) Integral(sqrt(1 + 1/x), x) >>> init_session(quiet=True) Python console for SymPy 0.7.6 (Python 3.4.1-64-bit) (ground types: python) >>> Integral(sqrt(1+1/x),x) / | | _______ | / 1 | / 1 + - dx | \/ x | / >>> |
How to print one matrix :
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | >>> x, y, z = symbols('x, y, z') >>> init_session(quiet=True) Python console for SymPy 0.7.6 (Python 3.4.1-64-bit) (ground types: python) >>> mat = Matrix([x*y, 1,0,3,-2, sin(z)]) >>> mat [ x*y ] [ ] [ 1 ] [ ] [ 0 ] [ ] [ 3 ] [ ] [ -2 ] [ ] [sin(z)] >>> |
Next example comes with this issue: equations can be solved with SymPy python module.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 | >>> solve(x*x+x+2) ___ ___ 1 \/ 7 *I 1 \/ 7 *I [- - - -------, - - + -------] 2 2 2 2 >>> solve(Eq(x*x+x+2)) ___ ___ 1 \/ 7 *I 1 \/ 7 *I [- - - -------, - - + -------] 2 2 2 2 >>> solve(Eq(x*x+2*x+4)) ___ ___ [-1 - \/ 3 *I, -1 + \/ 3 *I] >>> solve(x*x+2*x+4) ___ ___ [-1 - \/ 3 *I, -1 + \/ 3 *I] >>> |